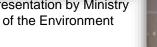
On November 22, 2019, CO2 injection of this demonstration project was suspended.

Cumulative CO2 Injection amount 300,110.3

Information from Japan CCS Co., Ltd.

[Site Visit]

Rooftop on Control Building


Visit to Injection Well

[CCS Forum]

Eco experiment performance by environmental performer "Ramma-sensei".

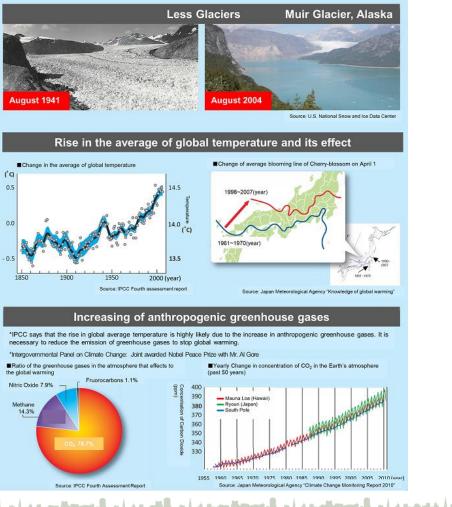
Presentation by Ministry of Economy, Trade and Industry

CCS Forum was held on March 17, 2018.

tonnes

The annual CCS Forum, sponsored by Ministry of Economy, Trade and Industry, was held at Grand Hotel New Oji (Tomakomai, Hokkaido), with a total of 315 participants.

The program consisted of the following: Part 1: Presentations on "Global Warming" by Ministry of the Environment, and "CCS Demonstration Project" by Ministry of Economy, Trade and Industry Part 2: Eco experiment performance by environmental performer "Ramma-sensei".

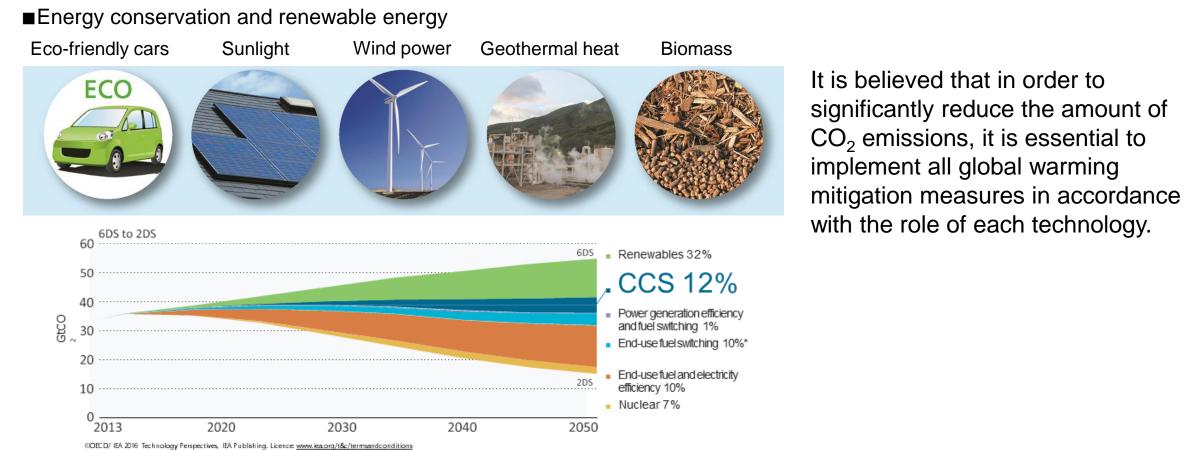

In the morning of the same day, a site tour to Tomakomai CCS Demonstration Center for the citizen was held. There were various questions by them such as safety and economy of CCS, and they deepened their 1/19 understanding on CCS.

والاستعادية والاستقلاص والمستقلين المستقلين

Cumulative CO2 Injection amount

300,110.3

Global warming continues



The natural environment has been changing without our knowing, for example, the decrease of glacier and the rise of average temperature.

Cumulative CO2 Injection amount

300,110.3

To reduce greenhouse gases

البداء ومعقاص المعطا ومقاصصا المارك ومعمدات

"End-use fuel switching: conversion from coal and oil into low carbon content fuels such as naturalgas

CCS is the technology to bridge between now and the next generation with the new energy.

Cap Rock

Reservoir

that is suitable for storage of CO₂.

A porous and permeable layer such as sandstone

An impermeable laver

that does not let CO₂ pass through.

such as mudstone

On November 22, 2019, CO2 injection of this demonstration project was suspended. Cumulative CO2 Injection amount

300,110.3

What is CCS?

A geological structure with

CO₂

Reservoir

والمراجع ويقومها والمعوقان المعود العربية والمعود المتعوق والمعوق ومناه المعوق والمعوق والمعوق

Cap Rock

a reservoir and overlying

cap rock is required.

Concept of CCS

CCS is a technology to prevent carbon dioxide (CO_2) released into the atmosphere emitted by facilities such as power plants and factories. The technology involves capturing the CO_2 , injecting it into underground geological formations and storing it permanently. Along with energy efficiency and renewable energy, CCS helps to tackle global warming.

Cumulative CO2 Injection amount

300,110.3

How to store CO₂

Features of Caprock Mudstone etc., made of fine mud grains

Impervious

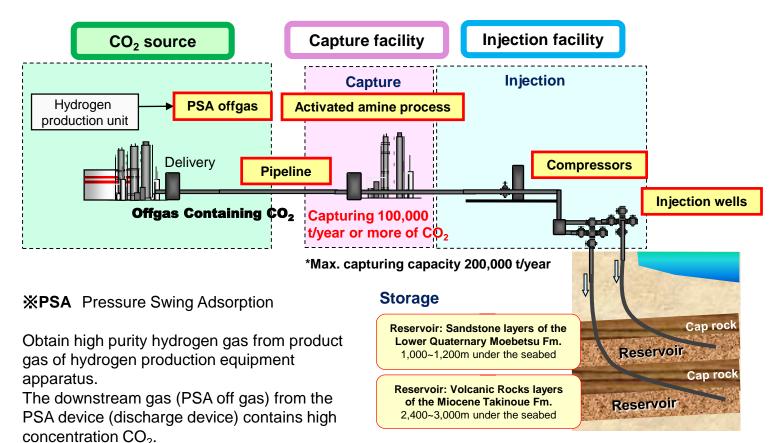
ومحافظتها ببابنه والاحتاج البوج وبالمالية والمتحاصية الملاحة والمحافظ والمحاف المحاف المحاف

· Sufficient blocking ability

Covering reservoir layer widely and thickly

Features of Reservoir

Sandstone, volcanic rock, etc., made of coarse grains


Sufficient pore spaces to store CO2
Pervious

Injecting the CO_2 into reservoirs at depths of 1,000 meters or more. The reservoirs are overlain by thick cap rocks that prevent the CO_2 from moving upwards.

Cumulative CO2 Injection amount

300,110.3

Flow Scheme of CCS Demonstration Project

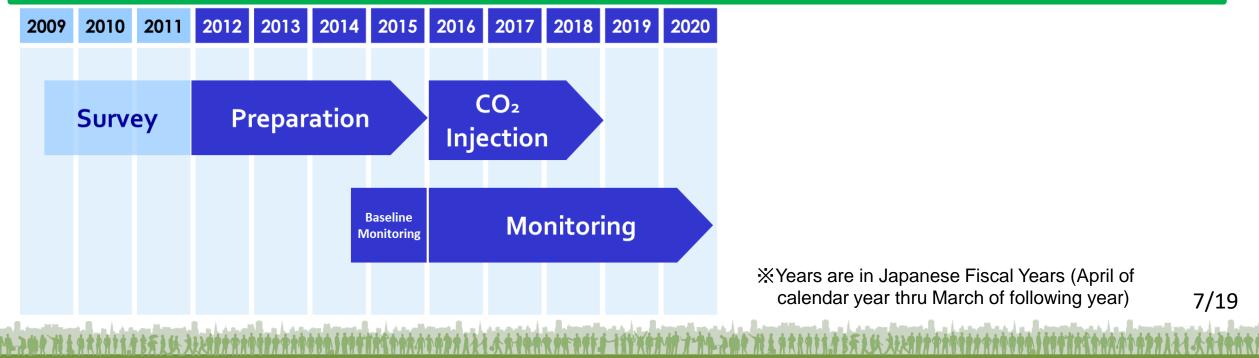
 CO_2 is captured from the offgas containing CO_2 generated from the refinery's hydrogen production unit during commercial operation, pressurized (up to 23 MPa) to the pressure required for the injection, and more than 100,000 tonnes of CO_2 per year is injected and stored under the two layers of reservoir at offshore Tomakomai.

Source: Ministry of Economy, Trade and Industry Edited from the verification test plan at Tomakomai point

فتجم التجنيل والفتحا تجنياته للفتحجان الفصيانية لارال التصير التصير المحيات

Cumulative CO2 Injection amount

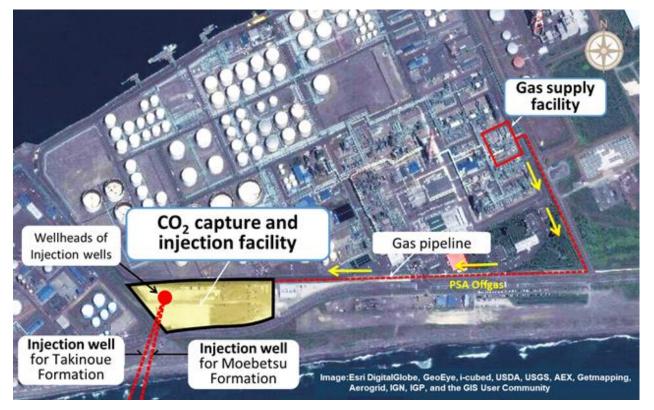
300,110.3


Tomakomai CCS Demonstration Project Schedule

■ From JFY2012 to JFY2015 : Preparation

Drilling of design and construction of facility, drilling of a injection well (a well for pressurizing CO2 to underground), preparation for demonstration operation, etc. were carried out.

From JFY2016 to JFY2020 : Monitoring

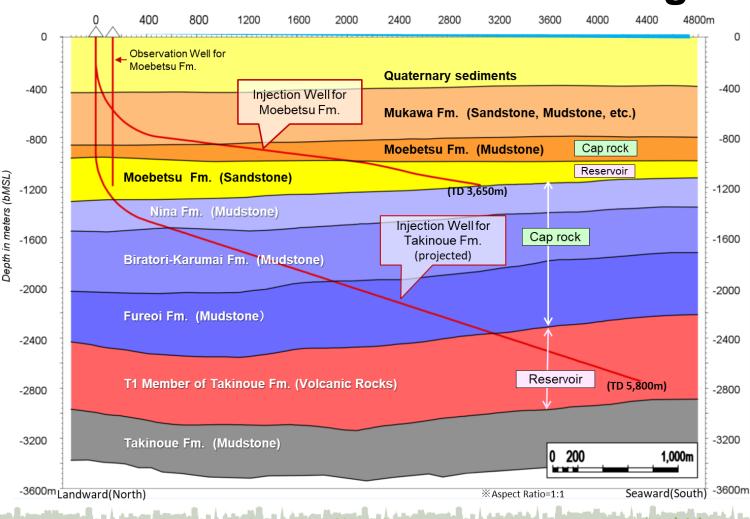

On April 1, 2016, Japan CCS Co., Ltd. was commissioned by METI to conduct "Tomakomai CCS Demonstration Project (FY2016)", and on April 6, CO_2 injection has commenced. We plan to inject more than 100,000 tonnes of CO_2 per year for 3 years from 2016 to 2018. Even after termination of the injection, we will continue monitoring of CO_2 behavior for two years.

Cumulative CO2 Injection amount 300,110.3

tonnes

Positional Relation of Onshore Facilities

والروار فمحاز ومثال والفه مريفا والموجان والموجان والموجون والقروفا والقروفا والموجان


"Gas supply facility" is a facility to send PSA offgas $(CO_2 \text{ containing gas})$ generated in the hydrogen production process of refinery to "Capture and injection facility" through a 1.4 km Gas pipeline.

At "Capture and injection facility", CO_2 is captured with a purity of 99% or more from CO_2 containing gas sent through the Gas pipeline, then increased pressure by the compressor, and injected through 2 injection wells into the reservoir under the seabed for storage.

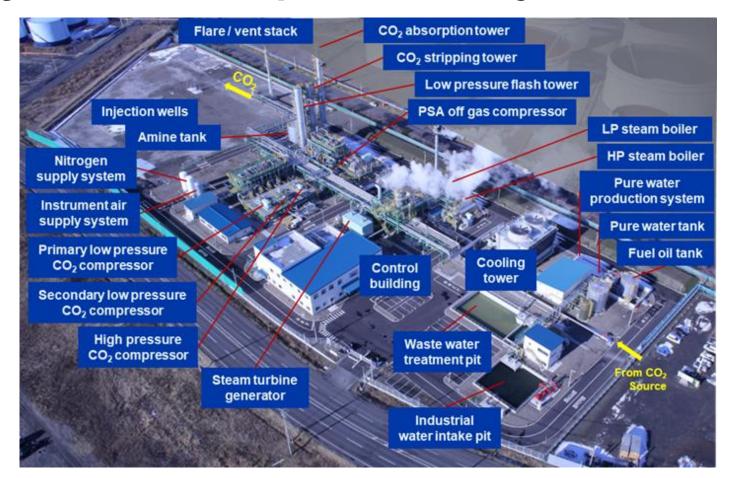
tonnes

9/19

Schematic Geological Section

This is the Schematic Geological Section of the CO_2 storage point.

CO₂ is injected into two reservoirs Takinoue Formation T1 and Moebetsu Sandstone Formation by two separate deviated wells.


The Takinoue Formation Injection Well is a sloping well with an excavation length of 5,800m and a maximum inclination of 72 degrees. Moebetsu Formation Injection Well is a sloping well with an excavation length of 3,650 m and a maximum inclination of 83 degrees.

المراجع والصحيان والمتعاصف والمتعالي ومقامه المتع

On November 22, 2019, CO2 injection of this demonstration project was suspended. **Cumulative CO2 Injection amount**

300,110.3

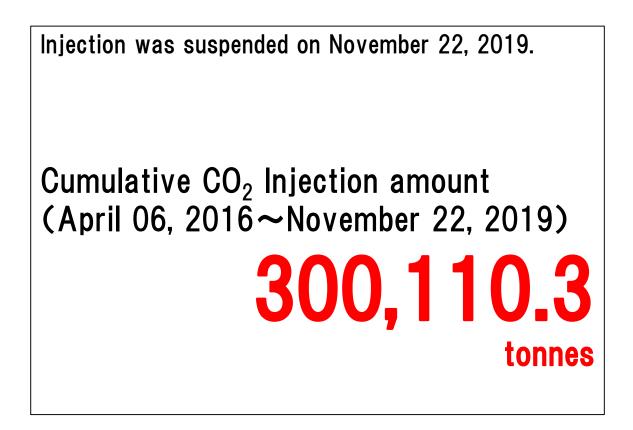
Bird's Eye View of Capture and Injection Facilities

10/19

On November 22, 2019, CO2 injection of this demonstration project was suspended. **Cumulative CO2 Injection amount**

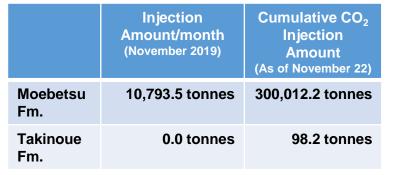
300,110.3

CO₂ Capture Facilities and Compressors

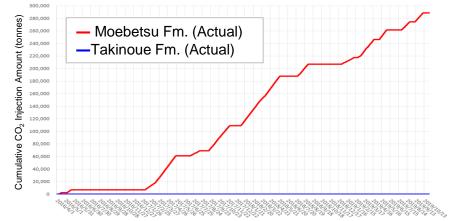


CO₂ Capture Facility Capture CO₂ from PSA Offgas

3 staged CO₂ Compressors Increase pressure to the required pressure for captured CO₂ injection


Copyright (C) 2009-2020 Japan CCS Co., Ltd All rights reserved.

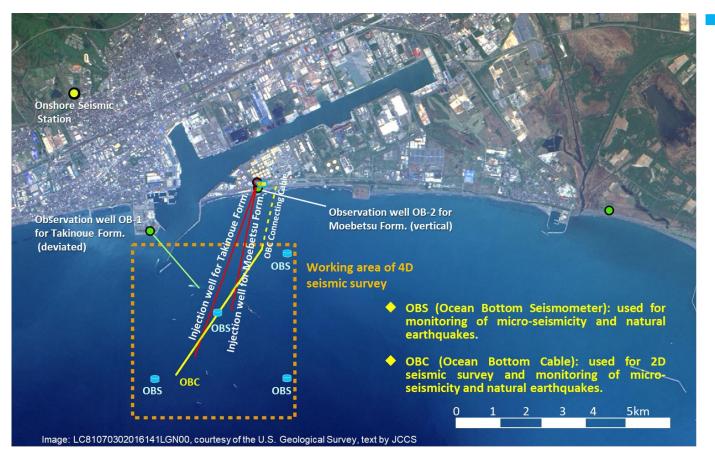
CO₂ Injection Report



البيان فمرجع فيصحبان والبقيم الموافق ومنابع الموصوق وبالمصوفا وبالقوم والمراقع والموصوق والمصوق ومرفيا وال

Injection Amount in November 2019

Change of cumulative CO₂ Injection Amount


12/19

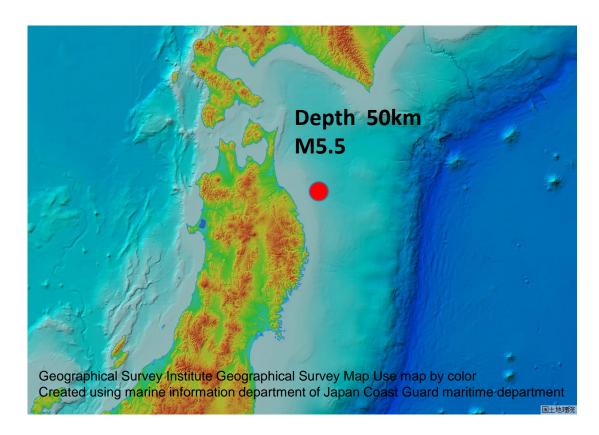
Copyright (C) 2009-2020 Japan CCS Co., Ltd All rights reserved.

Cumulative CO2 Injection amount

300,110.3

Monitoring Facilities : Location Relation

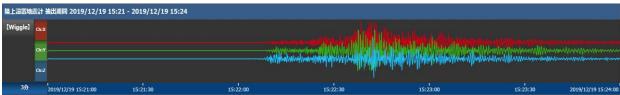
المستقادينا والمصيات المتحالي المصافحينا والمصيدا والمستقدية المستقدين المستقد وما والقرميا والمستقد


Monitoring networks are constructed near and around the CO_2 injection point and continuously monitored over the six years before the implementation of CO_2 injection (1 year), during CO_2 injection (3 years) and after the termination of injection (2 years).

- We survey the pressure and temperature of the formation in the wells - the observation well (3 wells) excavated around the CO₂ injection point and the CO₂ injection well (2 wells).
- We installed a seismograph in the observation well and under the seabed to observe earthquakes (including minute vibrations that will not be felt by the body).
- Survey data is centrally controlled at Tomakomai Demonstration Center and constantly monitored the presence or absence of abnormality.

Cumulative CO2 Injection amount 300,110.3

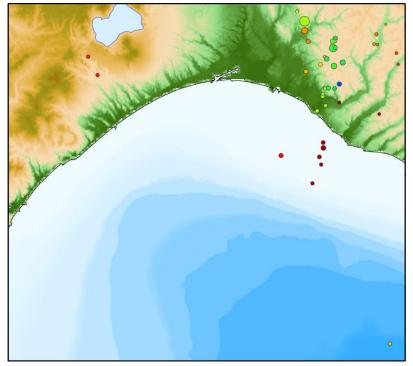
tonnes


The most recent noticeable tremors observed in Tomakomai

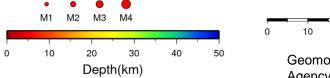
ومعاليها فيحافظها والفهمية الملاقية وتصفيك الملاقع والمحمول والتوجيل والتعويني والمعطاء

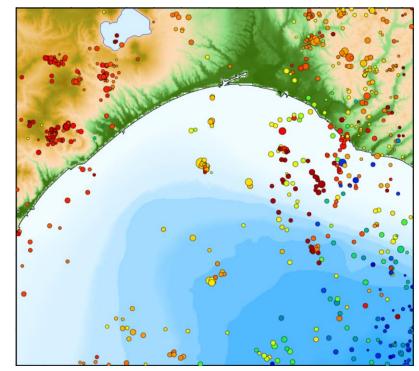
Observation record of Onshore Seismometer

Observation record at Midorigaoka Park


Earthquake Information Announced by the Japan Meteorological Agency

Time & Date	15:21 (JST) 19 December, 2019
Hypocenter	Lat. 40° 30'N Lon. 142° 12'E Depth 50km
Magnitude	5.5
Seismic Intensity at Tomakomai-city	1


Cumulative CO2 Injection amount

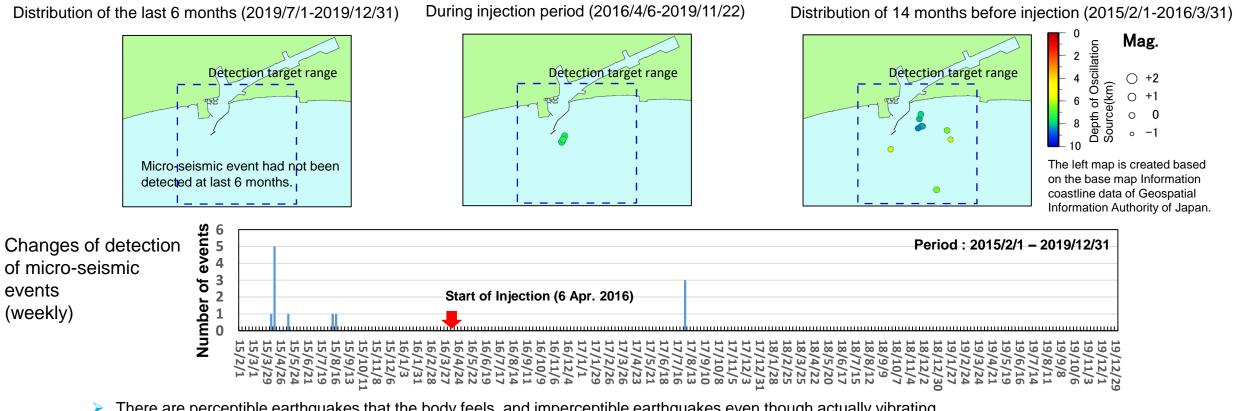

300,110.3

Distribution of Natural Earthquakes around Tomakomai

Natural earthquake hypocenter distribution in December 2019

Natural earthquake hypocenter distribution occurred from 2001 to 2010

The hypocenters in the figure is from the JMA Unified Hypocenter Catalog. Earthquakes with the hypocenter depth of 50 km or less are displayed.

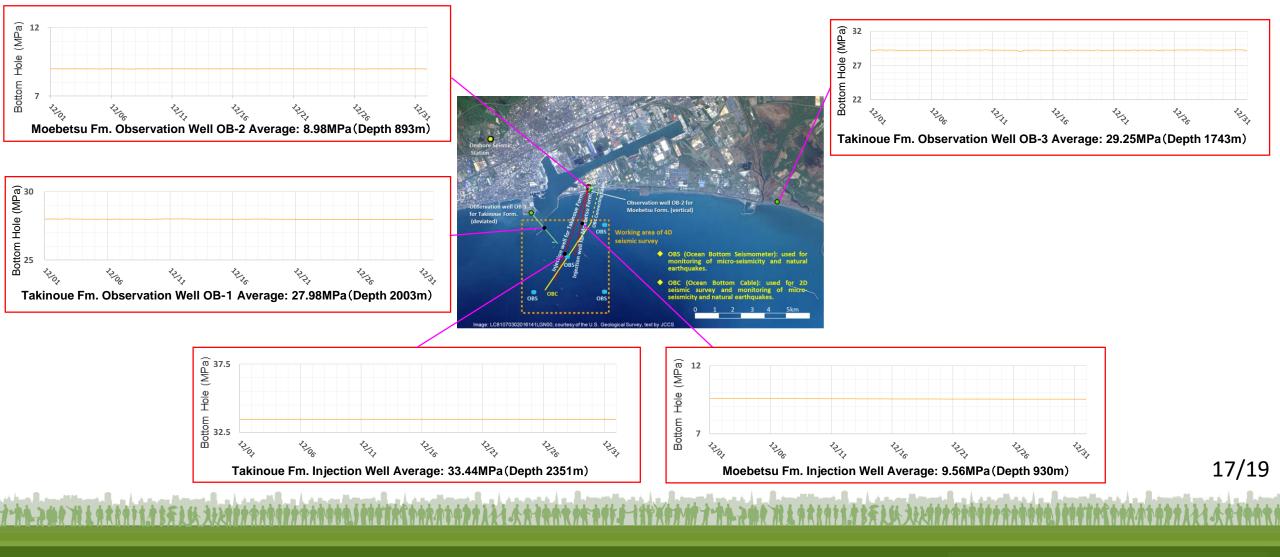

Geomorphic map is prepared from Geographical Survey Institute numerical map 250 m mesh (altitude) and Japan Marine Safety Agency 'Japan Oceanographic Data Center' 500 m mesh water depth data 15/19

On November 22, 2019, CO2 injection of this demonstration project was suspended.

Cumulative CO2 Injection amount

300,110.3 tonnes

Micro-seismic events nearby injection point

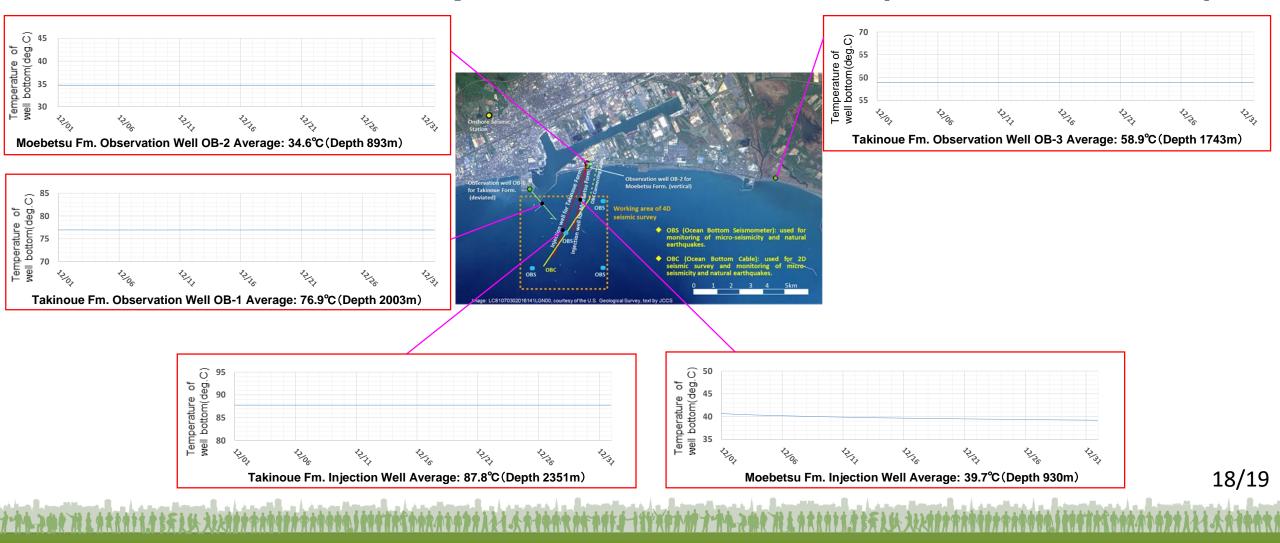


- There are perceptible earthquakes that the body feels, and imperceptible earthquakes even though actually vibrating.
- In this demonstration, the smallest (less than magnitude 1) imperceptible earthquakes are defined as micro-seismicity.
- In this demonstration, micro-seismicity with a magnitude of -0.5 or more with a depth of less than 50 km in the vicinity of the injection point are monitored, due to restrictions on the placement of observation point, constraints on seismograph detection capability, and so on.

On November 22, 2019, CO2 injection of this demonstration project was suspended. Cumulative CO2 Injection amount

300,110.3

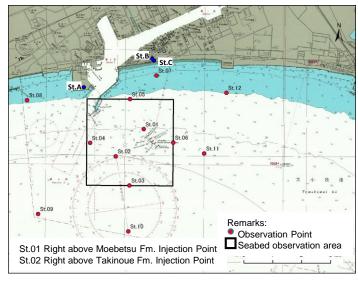
Observation of pressure in the wells (December 2019)



Copyright (C) 2009-2020 Japan CCS Co., Ltd All rights reserved.

On November 22, 2019, CO2 injection of this demonstration project was suspended. Cumulative CO2 Injection amount

300,110.3


Observation of temperature in the wells (December 2019)

Cumulative CO2 Injection amount

300,110.3

CO₂ Concentration around injection point(seasonal)

Cruise to the Japan Coast Guard issue navigation chart (W1034)

Seasonal observation of CO_2 concentration is conducted at three onshore points (St.A to C) and 12 offshore points (St.01 to 12). The concentration of CO_2 is indicated as

Volume ratio (unit: ppm) at the onshore observation points, and as partial pressure (unit: μ atm) at the offshore points. The figures of the offshore points are based on the measurement at 2 meters above the seabed.

		2013				2014				2015				2016				2017				2018				2019			
W B W		Spring	Smmr	Fall	Winter																								
	St.01		323	425	388	424								372	401		339	228	474	410	403	301	386	348	304	351			
X	St.02		364	432	393	428								475	389		351	255	484	440	399	308	454	371	307	346			
	St.03		343	410	377	420								477	386		347	254	431	424	390	328	450	355	280	427			
	St.04		351	399	393	436								432	394		335	239	485	440	395	312	384	355	248	324			
	St.05		326	352	387	430								370	416		309	247	354	372	369	256	348	356	261	300			
in the second	St.06		283	417	395	424								411	366		332	259	450	426	390	306	408	356	303	325			
	St.07		314	353	368	424								358	517		316	273	371	384	366	270	343	355	216	307			
27	St.08		370	349	366	327								360	439		316	277	320	366	375	276	356	327	228	313			
	St.09		358	395	379	417								437	391		335	276	423	428	391	346	437	369	302	417			
	St.10		353	395	372	415								477	394		333	266	423	420	374	337	423	353	269	407			
	St.11		350	415	394	418								443	391		338	264	448	436	384	310	397	353	330	319			
2	St.12		317	377	383	420								334	447		334	252	349	383	389	260	348	344	263	305			
	St.A					396	379	412	400	397	394	399	424	417	404	407	432	414	404	414	413	411	395	401	419	430			
	St.B					365	382	405	407	400	394	388	415	411	397	405	417	413	392	408	414	412	395	423	424	425			
	St.C					403	395	403	403	392	406	396	409	423	410	412	403	413	417	428	417	427	404	421	421	430			

* Offshore observation was not conducted in fall 2016. 19/19